Metacyclic $p$-groups and Chern classes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRANSFER AND CHERN CLASSES FOR EXTRASPECIAL p-GROUPS

In the cohomology ring of an extraspecial p-group, the subring generated by Chern classes and transfers is studied. This subring is strictly larger than the Chern subring, but still not the whole cohomology ring, even modulo nilradical. A formula is obtained relating Chern classes to transfers. Introduction Methods to determine the cohomology ring of a finite group almost always presuppose that...

متن کامل

CHERN CLASSES AND EXTRASPECIAL GROUPS OF ORDER p

A presentation is obtained for the Chern subring modulo nilradical of both extraspecial p-groups of order p5, for p an odd prime. Moreover, it is proved that, for every extraspecial p-group of exponent p, the top Chern classes of the irreducible representations do not generate the Chern subring modulo nilradical. Finally, a related question about symplectic invariants is discussed, and solved f...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

Chern classes of compactifications of reductive groups

In this paper, I construct noncompact analogs of the Chern classes of equivariant vector bundles over complex reductive groups. Then “Chern classes” of the tangent bundle are used to carry over to the case of an arbitrary reductive group some of the well-known results that hold for a complex torus. One of the results of this paper is a formula for the Chern classes of all regular equivariant co...

متن کامل

Automorphisms of Metacyclic p-Groups With Cyclic Maximal Subgroups

This paper deals with the determination of the automorphism group of the metacyclic p-groups, P (p,m), given by the presentation P (p,m) = 〈x, y|xpm = 1, y = 1, yxy−1 = xp+1〉 (1) where p is an odd prime number and m > 1. We will show that Aut(P ) has a unique Sylow p-subgroup, Sp, and that in fact

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 1982

ISSN: 0019-2082

DOI: 10.1215/ijm/1256046713